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The Vertex Formulation of the Bazhanov-Baxter 
Model 
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In this paper we formulate an integrable model on the simple cubic lattice. The 
N-valued spin variables of the model belong to edges of the lattice. The 
Boltzmann weights of the model obey the vertex-type tetrahedron equation. In 
the thermodynamic limit our model is equivalent to the Bazhanov-Baxter 
model. In the case when N=2 we reproduce Korepanov's and Hietarinta's 
solutions of the tetrahedron equation as special cases. 

KEY WORDS: Tetrahedron equation; Zamolodchikov model; Fermat curve; 
spherical geometry; symmetry properties. 

1. I N T R O D U C T I O N  

Recently two new solutions of the vertex type tetrahedron equat ion st-3J for 
the number  of spin states N =  2 were obtained. 14'5) In a previous paper we 
generalized these solutions for N > 2 and for general spectral parameters, 
and succeeded in generalizing the solution from ref. 5 for arbitrary N. 

For the case N =  2 the solution proposed by Hietarinta appears to be 
a special case of the planar  limit of the Bazhanov-Baxter  solution. ~6) Recall 
that in the Bazhanov-Baxter  model (BBM) t7) N-valued spin variables 
belong to the vertices of the elementary cubes of the lattice and the 

i Branch Institute for Nuclear Physics, Institute for High Energy Physics, Protvino, Moscow 
Region, Russia. E-mail: sergeev_ms@mx.ihep.su. 

" Department of Theoretical Physics, RSPhysSE, Australian National University, Canberra, 
ACT 0200, Australia. 

3 On leave of absence from the Institute for High Energy Physics, Protvino, Moscow Region, 
Russia. E-mail: vvml05@phys.anu.edu.au. 

4 Institute for High Energy Physics, Protvino, Moscow Region, Russia. E-mail: stroganov@ 
mx.ihep.su. 

31 

822/82/1-2-3 0022-4715/96/0100-0031509.50/0 �9 1996 Plenum Publishing Corporation 



32 Sergeev e t  al. 

Boltzmann weights in the tetrahedron equation (TE) are parametrized by 
the angles of a tetrahedron/8~ 

The Bazhanov-Baxter model cannot be directly reformulated as a 
vertex-type model using an obvious duality between vertex and interaction- 
round-a cube formulations. For example, for the case N = 2 (Zamolodchikov 
model) t~l such a duality requires an invariance of the weight functions with 
respect to a recoloring of any face of the elementary cube. It is known 19~ 
that the Boltzmann weights of the Zamolodchikov model in general do not 
possess this symmetry (despite the fact that the absolute values of the 
Boltzmann weights do). 

Nevertheless, in the particular limit when all four vertices of the 
tetrahedron belong to the same plane (the planar limit), it is possible to 
rewrite the Boltzmann weights using two-state edge variables only and as 
a result to obtain the vertex solution of the TE from ref. 5. Note that for 
N >  2 the solution of the TE from ref. 6 does not coincide with the planar 
limit of the BBM and seems to be new. 

Attempts to remove the planar limit restriction for this solution have 
been unsuccessful. Instead we have obtained a complete (depending on 
three arbitrary angles) vertex solution of the TE for a general number 
of spin variables N. This solution at N =  2 reproduces the solutions of 
Korepanov and Hietarinta in the static and planar limits, respectively. This 
new model in the thermodynamic limit coincides with the BBM. However, 
due to the vertex form, this formulation may be useful for a more careful 
investigation of the model. Namely, one can try to formulate the Bethe 
ansatz, and construct a functional equation for the transfer matrices 
analogously to the two-dimensional case. Also one can trye to construct a 
three-dimensional generalization of the L operators, etc. 

The paper is organized as follows. In Section 2 we recall the usual 
notations for the functions on ZN which will be used for constructing the 
Boltzmann weights. In Section 3 we give an explicit form of the vertex 
weight function and show the equivalence of our vertex model with the 
BBM in the thermodynamic limit. Symmetry properties of the vertex 
weight are listed in Section 4. Also we give exotic forms of the gauges and 
write out the inversion relation for the weight functions. The case N - - 2  is 
considered in a special gauge in Section 5, where we show the equivalence 
of our vertex weight in the static limit with the solution of the TE proposed 
by Korepanov. Section 6 is devoted to a sketch of the proof of the TE for 
the vertex weight. In an Appendix we collect the most useful formulas for 
co-hypergeometric series with co being an Nth  root of unity. 
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2. N O T A T I O N S  A N D  D E F I N I T I O N S  

In this section we give all necessary definitions and notat ions.  
Denote  

col/2=exp(rci/N), N ~ Z (2.1) 

Let x, y, z be three homogeneous  complex variables const ra ined by the 
Fe rma t  equat ion  

x N -I- yN = z N (2.2) 

Hereafter  we use the no ta t ion  p = (x, y, z) unless it may  lead to misunder-  
standing. 

Now we define a function w(p[a) by the recurrence relat ion 

w ( p l a ) _  {7 Y 
(2.3) 

w ( p l 0 )  11 z - x c o "  
s = l  

where a is an element of ZN. 
Fol lowing  ref. 10, we choose a normal iza t ion  factor w(p l0 )  as follows. 

First  we set z = 1 and consider  the case Ixl < 1. Then we can choose y as 

y = ( 1 -- x N) ,IN (2.4) 

Fo r  such x, y, and z we put  

N - - I  

w(pIO)=Y  ~j-'vv2 I-[ ( 1 - ~  (2.5) 
j = l  

With such a normal iza t ion  the function w(pla)  satisfies 

N - - I  

]--[ w ( p l a )  = 1 (2.6) 
a = 0  

Fur ther  we can analyt ical ly  cont inue formulas (2.4)-(2.6) over x into 
the whole complex  plane with cuts from the points  x = co", n = 0 ..... N -  1, 
to infinity. F o r  such x and y we will say that  the point  p = (x, y, 1 ) belongs 
to the main  branch Fo of  some covering curve F on which the function 
w(pla) is well defined. If  we go under  the cut a round  the point  x = co" in 
the anticlockwise direction,  then w(p[0)  is mult ipl ied by the phase factor 
( - 1  )N-~ co". ReStoring the z dependence,  it is easy to check that  

w(oY'x,y, z lm)=co(x , y ,  z l m + n ) ,  m, n e Z u ,  p = ( x , y , z ) ~ F o  

(2.7) 
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Now let us consider a region on Fo such that 

- 21r/N < Arg(x/z) < 0 (2.8) 

and denote it as Fo. It is easy to show that for the points p ~ F o we have 

-Tr/N < Arg(y/z) < ~r/N (2.9) 

Then for the given point p = (x, y, z) e Fo define a new point Op ~ F o 
a s  

Op = (z, col/Zy, cox) (2.10) 

Using these notations, we have the following property of the w 

function: 

(irt(N 2 -- 1)) 
w(p [a) w(Op] -a)  ~(a)exp \ ~-~ = 1, a E Z  N, 

where 

P ~ P0 

(2.11) 

~(a) = CO.(a-NI/2 (2.12) 

In the appendix we give a set of the most useful formulas and identities 
for the w function. 

3. THE VERTEX WEIGHTS 

For a given spherical triangle with the angles 0l, 0~_, 0s and corre- 
sponding linear angles (i.e., sides of the spherical triangle) al ,  a2, a3 define 
four points Pi ~ Fo: 

( a-2"~(sinfl"~'m 
x(Pl)=CO-I/2exp i Nj\sinfl2 j ' 

f fll'~fsin a3"~ l/u y(p,) = exp ~i 

( a3"~(sinfl2"~'m 
x(P2)=w-'/2exp i NJ\sinfl,  ] ' 

f .  fl,'~ f sin a3"~ lm 
Y(P2)=exp lt NJlsi---~l j 

( ~V/ks,npo/a3"~/sinfl3"~'m x(p3) =co - '  exp i-;7..-7--;-~. , 
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/ i l l ,  f sin a3X~ I/N 
Y(P3) = exp t ' 

/ .  a3'~/sin flo'~ t//v 
x(p4) = o9-' exp Itt ~,) l tsi--~3) 

( i floX](sin a3~ liN 
Y(P4)  =exp  \ - -  NJksin f l3J 

z (p i )  = 1, i = 1, 2, 3, 4 (3.1) 

where the fli are the usual linear excesses 

fl0=/t a l -t- a 2 -I- a 3 2 , fli = 7~ - flo --  ai (3.2) 

Further we will consider (3.1) as a definition 

p i - P i ( a l ,  a2, a3). 
Let Pk, k = 1, 2, 3, be normalization factors: 

for the points 

sin a k biN-- I}/N 

Pk = 2 COS(flo/2) COS(ill/2) COS(fl2/2) COS(fl3/2),] 
(3.3) 

With these notations the vertex weight function is 

Jl.J?.J3 = i~j2 + J3, i2 (oJ3(Jl -- il )n Ril.i , , i3 + i 3  / " 3  
w ( p l  l il --  i2) w ( p 2  I Jl - J 2 )  

w(P31i l  --  Jz)  w ( p 4  IJl --  i2) 
(3.4) 

Such weight functions obey the tetrahedron equation (see Section 6) and 
hence define an exactly solvable lattice model. 

Now we will show that such a model is equivalent in the thermo- 
dynamic limit to the BBM. ~7~ In the BBM to each cube of the lattice we 
assign a weight function depending on eight corner spins (see Fig. 1). 

g b 

W ( a l e ,  f ,  glb,  c , d [ h )  

Fig. I. A weight function assigned to each elementary cube of the lattice. 
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We choose the weight function in the following form: 

W(ale, f, glb, c, dlh laf , a~, a~) 

V w(Op~ld-_h -a)w(Op~la  - g - a )  Oy,th+g_~_b , 
=P3 ~ w(Opgle--c--a)w(Opf-(-fS-bZ'~ 

(3.5) 

wherep .S=p i ( a f ,  s s a 2 , a 3 ). Here a s are the sides of the spherical triangle in 
the notation of refs. 7 and 8. In fact, expression (3.5) coincides with the 
weight function from ref. 8 up to gauge and normalization multipliers. 

Consider now a chain of n weights (3.5) in the direction a - g  with 
cyclic boundary conditions. This chain defines a weight function for a two- 
dimensional model closely connected with the homogeneous generalized 
chiral Potts modelJ 7" ~'-) The weight function of this two-dimensional model 
looks like 

~#/~(A, B, C, Dial ,  a~, a~) 

=l-I W(a~[c~,, b~,, a~,+, Ib=+t, c~+l, d~ld~+,) 
r 

= • l ip3  w(OpSlO_a=)w(Opflb=_a=) 

X O )  a a l d a +  I + a a + l  - - c a + l  - - h a + l )  (3.6) 

where the capital spin A = {a~} and Ct,,=a~,-a,+~, etc. (see Fig. 2). 
We now move our frame one-half step to the right in the two-dimen- 

sional lattice (see the right part of Fig. 2). The points A and C disappear 
from our frame, but there now appear the right neighbor s of our 
previous spin of the summation s Then we get the four-spin weight S: 

Fig. 2. 

,,. aa+l ,,. b•+l 

I To, 
",,~co ",,~do 

qW W 

A transformation corresponding to a transition from the IRC form to the vertex form 
of the weight functions. 



The Vertex Formulation of the Bazhanov-Baxter Model 37 

S(Z, B, S', D I as, af ,  af) 

w(Opffl d~- ~) w(Opf I t;=- ~'0 o)~._~a)~=+,_b=+,) 
= 0 p~ w( Opfld~-a;) w(Opfl&-a~) 

. . . .  -a,.b,+,-a,+,, s rc--af, zc--af) (3.7) = I-I R -a~,-&,b~- d, [a2, 

where the vertex weight R is defined by (3.4). The last expression in (3.7) 
differs from the two-dimensional projection of the vertex lattice by a slight 
modification of boundary conditions. So the BBM with the weight func- 
tions (3.5) depending on a n is equivalent to the vertex model with the 
weight functions (3.4) depending on the ai, such that 

a, =a f ,  a2=x--a~,  a3 = n - - a f  (3.8) 

in the thermodynamic limit. 

4. S Y M M E T R Y  P R O P E R T I E S  

The weight function of the BBM, (3.5), is symmetric with respect to 
the cubic symmetry group up to some multiplicative gauge transforma- 
tions. In the case of the vertex weight function (3.4) the corresponding 
gauge transformations are the Fourier ones. To simplify all formulas, we 
will use convenient operator notations. We will consider the weight (3.4) as 
an operator acting in the tensor product of three linear N-dimensional 
spaces so that 

J l  , J2  , J3 Ril,12,i3 = (ira, i2, i3l R [Jl,J2,J3) (4.1) 

Define operators of the Fourier transformation and of the spin inversion: 

1 
< il F Ij > = - ~ o 9  v, ( i  J i j ) = 3 , . _ j  

Then the inversion relation for the vertex weight is 

(4.2) 

wher~ 

R(al , a2, a3) J | J | JR( - a  I, -a2,  -a3) J | J | J 

= 1 | 1 | lr a2, a 3 )  

= (  sin(/~0/2) ~2(N-,)/u 

O(al, a2, a3) \cos(ill/2) cos(fl2/2) cos(fl3/2)J 

(4.3) 

(4.4) 
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In fact, expression (4.4) coincides explicitly with the inversion factor for 
BBM/Iol 

To write down the symmetry properties of the weight (3.4) we need to 
define the permutation operators Po: 

Pl2 I/l, i2, i3) = li2, il, i3) (4.5) 

and similarly for Pl3, P23- 
Let t~, t2, t 3 be transpositions in the corresponding vector spaces, with 

t the total transposition sign: 

R'(ai,  az, a3) = Rti'-'t3(ai, a2, a3) (4.6) 

Then the crossing relation is 

l | 1 7 4  a 3) l | 1 7 4  (4.7) 

and all five space permutations are given by 

F - l  | F - l |  F - I R ( a i ,  a2, a3) F |  F |  F =  Pi3R'(a 3, a2, a i) P13 

J | J | FR(al,  a2, a3) J Q J | F - l  = P12Rt( a2, ai , a3) P l2 

F | 1 7 4  a 3 ) F - l | 1 7 4  =P23Rt(al ,as ,  a2) P23 (4.8) 

F -1 |  -I  |  a2, a3) F | 1 7 4  ai, a~) P12P23 

J | F |  FR(al,  a~, a3) J | F -1 | F -I  = PI2P23R(a2, a3, ai) P23PI2 

Combining Fourier transformations with diagonal gauge transfor- 
mations, one can obtain other forms of the R-matrix. In general these 
combined transformations are the gauge transformations of the lattice, but 
not the gauge transformations of the tetrahedron equation. 

Note that there exists the conservation law i2 + i3 =J2 +J3 for the 
weight (3.4). The following are some combined transformations which lead 
to other forms of the spin conservations laws: 

N - I  y" w t ,  ) ) ,, . ,2 . , - , , <, , <, ) 
Ot3,f13 

= 6(J3 +J~ - i3 - it - e(j2 - i2)) O(J2 - i2) -~ co-;~u:-':) 

w(pl( ai, az, a3) I ii -- i2) w(p2( ai, a2, a3)IJi --J2) 
xp3 w(p3(al, a2, a3)[il --J2) w(p4(al, a2, a3)]Jl --i,_) 

(4.9) 
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N - :  E ,o-,,,-,,', �9 ~,.#,~ \ qS(fl,_) / R~',.~224.~(a" a2, a3) 

= di(J2 +Jl  - i2 -- il -- e(J3 -- i3)) tP(J3 -- i3)" (-oJ2(i3--J3) 

w ( p l ( a l ,  a3, a2) l - -J l  --J3) w(p2(al, a3, a2)l -- i l  - is) 
X P2 w(p3(al, a3, a2) l - J l  - i 3 )  w(p4(al, a3, a2)l -- i l  - - Js )  (4.10) 

N -3 ~. 09 O(fll) Ra,.p_,.p3(al, a2, a3) 
r flra 

= 5(Jl + J2 -- it -- i2 -- e(j3 -- i3)) (~(J3 -- i3) -~ (~ --J3) 

w(p i (  a3, a2, al ) I  J3 - j2)  w(p2( a3, a2, al ) [ i3 - i2) 
x Pl w(p3(a3,  a2, a l )  l j 3 -  i2) w(p4(a3,  a2, al)  l i 3 - J 2 )  (4.11) 

where 5 ( a ) =  d,.o, q~(a) and Pk are defined by (2.12) and (3.3), respectively, 
and e is an arbi t rary integer. Other  choices of  the diagonal  �9 factors lead 
to complicated nonmultiplicative expressions for the weights. The exception 
is the case N = 2. 

5. T H E  C A S E  N = 2  

In this section we consider the case N =  2 in a special gauge in which 
our R-matr ix  (3.4) can be reduced to the vertex solutions of  Korepanov  
and Hietar inta  in the static and planar  limits, respectively. 

For  the case N = 2  the list of  suitable Fourier  t ransformations 
increases. Namely,  

o) a3) E L j P', ' : . ' , '"" . 2 ,  
am, t im  x m  = 1 

= d(i~ + J l  + i3 +J3 - i2 - J 2 )  co("3-J3J":-J" 

w(rl [ - i l  + J 2 - J 3 )  w(r3l ~ - - i 2  + j3)  -~4,.!- '43 
x w(Orol i l  -- i2 + i3) w(Or2[ --i l  + j 2 - -  i3) n.,,..,3 (5.1) 

where o9 = - 1, 

= {4[cot ( f lo /2) . . .  cot(fl3/2)] ,/2} (N-I)/N 

and the four poiflts r; are given by 

x(ri)  = exp( - i f lJN) ,  

z(ri) = exp(ifli/N), 

y(ri)  = col/4(2sin fli) 1IN 

i = 0 ,  1 ,2 ,3  

(5.2) 

(5.3) 
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Due to the total symmetry, this transformation is the gauge transformation 
of the tetrahedron equation, so this weight /~ obeys the tetrahedron 
equation (see Section 6). 

When N =  2 the function w is very simple: 

Define 

w(riW(r'l l ) =exp (i ;)(tan ~) (5.4) 

A . \  1/2 
t a n ~ )  = ' i ,  i=0 ,  1,2, 3 (5.5) 

z /  

Then we can represent the weights (5.1) by a compact table (see Table I). 
The weight defined by this table differs from (5.1) by a normalization 

factor. Using the following property of a spherical triangle: 

tan fl-' '-n f l j -  tan ~ "  ~d 2 ta 2 - 2 tan 2 '  {i,j, k, l} = {0, 1, 2, 3} (5.6) 

where 0~ i are the angle excesses of the spherical triangle, we can easily 
obtain the static limit o f /?  (the case when So = 0). This static limit appears 
to be the solution of the tetrahedron equation proposed by Korepanov. (4) 
Moreover, in the planar limit when f12 = 0 the vertex weight (5.1) coincides 
with the N =  2 solution by Hietarinta. t5'6) 

Table I. Vertex Weights for the Case N = 2  

-o.o.o - o . J . t _  - I . o . l _  -,.s.o Ru.u.o =Ro,l,I- Rj.o.i- Ri.t.o = 1  
--I.1,1 --I,U,0 --0.1,0 --0,0,1 Rl.l.i = Ri.o.o = Ro.l.o = Ro.u.l=totlt213 

--0, I,0 --0,0.1 --I,0,0 --I,1,1 
Ro.o.i = Ro.l.o = - -Rt . l . i  = --R=.u.o=tott 
--I,O,I - - i . l .O --O,l.I --O,O,U 

Rl.l.u = R I . o . ~ =  - R o . o . o =  --Ro.l.l=tzt] 

-- I .1.1__ - - I . 0 , 0  --0.0,1__ 
R o . l . o - R o . o . i -  - R t . u . o -  
--0.0,U__ --0,1,1__ --I,I,0__ 
R j . o . t - R t , L o - -  --Ro.l,i-- 

-/~~176 = -itot 2 
--l,U,l 

- -  R o . o .  0 = II 113 

--0,0.1 --1,1.1 --I,0,0 --0.1.0 R~.l.l=Ro.o.i = Ro.L.o = RLo.o=tot3 
--I.1,0 --0.0,0 - -O, l . l__ --I,0.1 Ro.o.o =R l , l , o  = R i . u . i -  Ro.l.l=t~tz 
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6. THE TETRAHEDRON EQUATION 

The vertex form of the TE is 

E l~kt,k2,k3R,jukak5Rt, j2j4k6R,nj3jsja 
"'il,i2,i3 k l i4 i5  k2k4i6 k3ksk6 

kl ,k2,k3 
k4,ks ,k6 

: E l~"k3"k5"k'D"k2k4J6R'klJ4zRJ|J2J3 (6.1) 
a~i3,is,i6 ~i2i4k6 ilk4k5 klk2k3 

kl ,k2,k3 
k4,ks.k6 

A complete solution of this equation is parametrized by six angles of a 
tetrahedron (five of them are independent): 

R = R(OI ,  02, 03) 

R' = R( Ol, 04, 05) 
(6.2) 

R # ~--- R(~  --  02, 04, 06) 

R "  = R(03, rc - 0s, 06) 

The ordering of the dihedral angles is natural with respect to the numbering 
of the spaces and differs from that in the standard equation (2.2) in ref. 9. 

For each vertex in (6.1) let ai be the corresponding planar angles: 

(01, 02, 03) ---* ( a l ,  a2, a3) 

(01, 04, 05) ~ (a' l , a~, a~) 
(6.3) 

(7~ -- 02, 04, 06) ~ (a'(, a;_', a~) 

(03, 7~-- 05, 06) ~ (a"l n, a~', a~") 

Then the planar angles of the four weights are constrained as follows: 

t /  t t t t  n 

a 3 ~-.a3--s (l 1 = a  I --C/tl 
(6.4) 

ttt t 
a~'=a~'--an,  a3 = a , - - a ,  

The four vertex weights (3.4) with the angles defined by (6.3) and 
satisfying (6.4) obey the tetrahedron equation (6.1). In this section sketch 
the proof of this statement. 

Let us substitute (3.4) in (6.1). Due to the spin conservation laws, the 
six summations 9n both sides reduce to three. It is useful to choose the 
indices k~, k_,, k4 as independent spins of the summations. The summands 
on the left- and right-hand sides are products of phase factors m c''~ and w 
functions. First let us collect on both sides all factors depending on the spin 
kl. The sums over kl have the form , g t  (see the appendix). As the first 
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step let us apply to these 27tz the (vp)2 transformations [see formula (A.14) 
in the appendix]. As a result there appear extra w functions, depending on 
k, - k 4, and we demand the cancellation of these extra factors with similar 
w functions on the left- and right-hand sides. This gives us some algebraic 
constraints on the parameters of the weights. 

Further summations over k2 and k4 become independent. Moreover, 
there are no phase factors depending on k2 and k4, and we can sum over 
kz and k4 using the "star-square" relation [see formula (A.19) in the 
appendix]. Finally, sums over k~ are both of the type 4gt4 and have a 
similar spin structure. Imposing necessary constraints among the 
parameters of the weights, we come to the equality of the left- and right- 
hand sides of the TE. 

We will not write out here the algebraic constraints coming from the 
cancellation of all w functions depending on k_,-k4,  the "star-square" 
applicability conditions (A.20), and the coincidence of the final expressions. 
All calculations are direct but rather tedious. 

As a result we obtain that all restrictions on the parameters of the 
weight functions are satisfied automatically if we take into account the 
parametrization (3.1) and constraints between angles (6.3)-(6.4). 

APPENDIX 

In this appendix we collect useful formulas in the theory of co-hyper- 
geometric series with co being an Nth root of unity. In fact, these formulas 
(or their particular cases) have appeared in many papers devoted to the 
chiral Potts model It*-~6) and to the TE. Let us define the r~gr series as 

~[(P, ,ml)" ' (Pr ,  mr) [ ) 
\ (p ' l ,m' l )  .(p',m'~) n 

w(pl ]ml +a)... w(prlm,.+a) o) "~ 
=~,EzNZ w(p'llm'l+a) w(p'rlm" +a) v/-N (A.1) 

Let us now discuss the role of the normalization. Spin-independent 
factors in all identities in this appendix are given for the case when all 
arguments of the w functions on the left- and right-hand sides belong to the 
region F o [see (2.8)]. If we abandon the restriction (2.8), then the phases 
of the w's can be chosen in such a way that the corresponding formulas 
remain correct. 

To simplify all notations, we omit arguments in the components of 
points p~ and imply that 

Pi = (Xi, Yi ,  Zi) (A.2) 
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for every i. In the final formulas of this appendix we will use also points q;. 
In this case we will explicitly point out by a superscript the corresponding 
point 

q, = (x/q, yq, z/q) (A.3) 

Many new points will appear on the Fermat curve on the right-hand 
sides of the formulas. In these cases we have to introduce new letters for y 
components. They have to be defined by (2.4) [and belong to region (2.9) 
in accordance with our agreement]. 

All formulas in this appendix are summation formulas (which exist for 
r = 1, 2, 3) and symmetry transformation formulas (which exist for r = 1, 2, 
3, 4). 

We begin with a cyclic analog of the Ramanujan summation formula 
for r = 1. In fact, this is nothing but the restricted star-triangle relation of 
the Bazhanov-Baxter modep~31 

)!Pl ( ( P l ' m l )  n)  
\(P2, m2) 

\Y l  Y2/ 

I)/2 W(7.1 Y2, ~, Y, Z2I --n) W(X I z2, ~, COZ, x2lrnl -- m2) 
conm~ W " v - tx ly2,  g, coylx2[ml--m2--n) 

=(co--I/2.~_~(N-II/2 

\ Y J Y 2  / 

q~ olco ..... lw(ylx2, co-1/2~, xl y 2 l m 2 - m l  + n) 
X 

where 

w(y,z2/co, co-l/2~, zl y2ln) w(zlx2, co-l/2~, x l z2 lm2--m, )  

q~o = exp {iTc ( N -  12N1)(N-2)~j 

(A.4) 

(A.5) 

For the proof of this formula see, for example, refs. 11 and 13. 
Here we give also two forms of inversion relations for w functions 

which have been used for the proof of the inversion relation (4.3): 

~ w(coX, coy, z I m_l + o') /COII2x\N-i 

W(X, y, zlm2 + o- ) -- N~"l ."2 ~--f---) 

w(x, y, z Ira, + a) (coI/2x~N- 1 

(A.6) 

(A.7) 
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Note that the points (rox, roy, z) and (x, y, roz) do not belong to the 
region/~o and we define for these cases 

w(rox, roy, zl0) _ _rol/2 Y (A.8) 
w(x, y, z[0) z - r o x  

w(x, y, coz [ 0) _ _rou2 z - x (A.9) 
w(x, y, z 10) y 

where (x, y, z) e/~o. 
To obtain symmetry formulas for higher r, we use the following simple 

fact. Let g~ and g,_ be arbitrary functions on ZN. If 

then 

CO k a  
~, (k)=  ~ g , ( a ) - -  (A.10) 

a E Z N N / / r ~  

gl(tr)g2(tr)= ~ gl(o ' )~2(-o ' )  (A.11) 
tr C ZN ~r E ZN 

Using this, it is easy to obtain the following symmetry transformation 
for 2gt2: 

~ ~2 f (pl' ml)(Pa' ma) [ n) 
- \(P2, m2)(P4, m4) 

=',~', ((ql '  O) (q3'm4--m3 +n) I ) 
\(q2, n) (q4, ml --m2) m2--m3 

X( ~12~43 " ~ { N - - I I ] 2 ( .  0 . . . .  3w(x~z2,~tz, roz,x2lm~-m2) 
Yl Y2 Y3 Y4/ W(Z3X4, ~43, x3z4lm4 -- m3) 

(A.12) 

where 

ql = (Zl Y2, ~1:, YlZ2), 

q2 = ( Y 3 Z 4 / r o ,  ~43, Z3 Y4), 

q3 = (Y3X4, ~43, X3 Y4) 

q4 = (Xl Y2, ~12, roylx,_) 
(A.13) 

This relation appeared originally as the (rp) transformation in ref. I 1 for 
the BB weight function. Note that (rp) 6 = 1. In this paper we have used the 
(rp) 2 transformation: 
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, ~ ( ( P l ' m l ) ( p 3 ' m 3 ) [  ) 
" - \ (P2,mz)(P, ,  m4) n 

( ( s I , 0 )  (s3,ml--m4--n) I ) 
= 2~r/2 (S2, m2--m3)  ($4, - -n)  m3--m4 

X CO ..... 2-t,,,,.-,,,)(,,,, .... ,) ( AA' ) ,N-  
I)/2 

~ 12~43 Yl Y'- Y3 Y4/" 

w(xt2"=),~12,0ozlx_~lm|--m2) w(zlz3y2Y4,.4, z2z4y !yal-n) • 

where 

and 

W(Z3X4, ~43' X3•4 Iron -- m3) w(x1 X3 Y2 Y4, A', cox2x 4 Y l Y3 [ - n )  
(A.14) 

11 = n - -  I l i  I -- nl3  -]- m2 + m,, (A.15) 

s1 = (Yl z2~43, A, z3 Y4~12), s3 = (XI Y2~43, A', y3x4~12) 
(A.16) 

$2 = (Yl X2~43, A', x 3 Y4~12), $4 = (21 Y2~43, A, Y32"4~12) 

We finish the list of the symmetry formulas for ~_~2 by T =  (rp)3: 

~,((P"m')(p3'm3)] 
- - \ (Pz,  m2)(P4, m4) 

=2~ ' ( ( f i t ' - -m3) ( f i a ' - -m ' ) ] -  \(fiE, --m4)(fi,, --mz) ,i) co . . . . . . . . .  - 4i /(~12~)32~41)/N-I) /2 

w(xl z2, ~12, o.)2"1x2[ml  --m2) w(gtz3Y2Y4, A, Z2Z 4 Yl Y3] --n) • 
W ( Z 3 X 4 ,  ~43, X 3 2 4  Ira4-  m3) 

w(x3z2, ~32, c o z 3 x 2  Ira3 -- m 2 )  

w(z)x4, ~41, x l z4 lm4- -mt )  

W(XI X3 Y2 Y4, A', OJX2 ~t" 4 Yl 9:31 --I~) 

(A.17) 

where 

fil = (z3A', ~32~43 Yl, x3A ), 
= (-'4A, co~41 ~43 Y2, cox4A), i f2 _ t 

103=(zIA' ,~41~I2Y3,XlA) 

if4 = (z2A', ~32~12 Y4, o.)x2A) 
(A.18) 

Note that in the ~ase when x tx3 /x2x  4 =co(z t z3/z2z4) , (A.17) becomes the 
star-star relation for the BBM, and p ; =  ffi- 

To obtain a summation formula for 2~2, consider (A.12) and set n = 0 
and q~ =q2. Then applying (A.4) to the right-hand side of (A.12), we 
obtain the "star-square" relation: 
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2~2 ((p'---z'm')(p3'm3) ) 
\(P2, m2)(P4, m4) 0 

= (  com-.r ,),N-,,,2 _ -.,:, 
\ ) 1  Y2 Y3 Y 4 ) CO --(rn,~ --m3)(m I 

X ~0 W(XzX4 Yl Y3, co- l/2A', XlX3 Y2 Y4 [m2 + m4 --  m i -- m3) 

x w(xlz2' ~12, cozlx2lml --m2) w(x3z2, r coz3x2 ]m3 --m2) 

I'V(Z3X4' r x3z4lm4--m3) W(ZtX4, ~41, xlz4lm4--ml) 
(h.19) 

where the parameters on the left-hand side obey the special restriction 

Yl Y3 =- co 2123 (A.20) 
Y2 Y4 z2 z4 

and the phases on the right-hand side are constrained by 

r  y I z 2  r  Y3z2 At = co- 1/2r162 y4 (A.21) 
r Y4Z3 ' ~4! Y4Zx' z2 

We will try to avoid such long notations as in (A.17) and (A.19). Extra w 
multipliers in all consequent formulas will have the same structure as on 
the right-hand side of (A.17) and so we will use only r to denote the 
whole argument dependence of w. 

Consider now r = 3. A summation formula can be obtained by sum- 
ming (A.17) over n with the help of the restricted star-triangle relation 
(A.4). The result reads 

3 ~  ((pl, ml)(p3, m3)(ql, m2 + m4-- 2) l O ) 
" \(P2,  m2)(P4, m4)(q2, ml + m 3 -  2) 

= 1~O1 (r r r r "~(N-- 11/2 

\ Y l  Y 2 Y 3 Y 4 S /  

o ) ( m 4  -- )- ) (n i l  + m3 -- m2 - -  m4) 
X 

W(XIX3Z2Z4, ~--~ W2X2X4ZIZ3 ] m I '~-m 3 - - m 2  --m4) 

w(r 12 [ml -- m2) W(r Ira3 --/712) 

w(r [ m4 -- m3) w(r [m4 -- ml) 

W(fil [)], --m3) w(~63 [ 2 --ml)  

w(fi212-- m4) w(fia[ 2--m2) 
x (A.22) 
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where w(~o.) and w(/~) are the same as in (A.17) and 

ql = ( COx2x4A, Y2 y4S,  z2z 4 A ' )  
(A.23) 

q2 = (XIX3A, Yl Y3 E', COZlg3A') 

Note that the formula (A.22) is symmetric with respect to any permutation 
o f p i ,  P3, q~ and P2, P4, q2. The star-triangle relation (ls''6) for the chiral 
Potts model is a special case of (A.22). 

To obtain symmetry relations for r = 3 and r =4 ,  we have to use 
(A.11), apply (A.4) or the T transformation correspondingly, cancel extra 
w factors (this gives some constraints), and then, using (A.11) again, obtain 
the corresponding ~ on the right-hand side. The formula for r = 3 reads 

r  ml)(P3, m3)(ql,/1) I 
3~r-/3 

\ (P2,  m2)(P 4, m4)( q2, 12) I 

- - \  A , 2 A y l y q  I 

0) 
CO(It --  m 2 ) ( m l  + m3 - -  m2 --  m4)  

w(~12 I m l - m 2 )  w(~32 

w(~43 I m4 - m3) w(~41 

Im3-m2)  w( ~ l l2-b m2 + m 4 -  tl - m l  - m3) 

I m4 - ml) w(2112 - 11) 

X 3 ~r'r3 r --m3)(ff3, --ml)(~]l, 11 --m2--m4) ) 
\(if2, --m4)(ff4, --m2)(t]2, 12--ml --m3) 0 

(A.24) 

where the connections between the arguments on the left-hand side are 

l y3yx  ~1-3~1 _~2~4-" 1 (A.25) 
P P ~ 2 ~ 4 ~ 2  y 2 Y 4 Y q = CO ~ p - ' ~ - ~  ' 2 Z lq Y2  q 

and the new arguments on the right-hand side of (A.24) are 

- -  P P q P P q P P q P P q (~) - (COx2x 4x2Y 1 Y 3 Y l ,  ~, Cox iX3Xl Y2 Y 4Y2) 

(~ )  - -  {Z q'v'q 2, Xql Zq) 
- -~"  1 " ~ 2 '  (A.26) 

q q t p p p p )  
ql = ( x l  Y2 A , ~, COAx2x 4Y l Y 3 

q2 = [ l ' q x q A '  P P P t . r l  2 , ~ , C O ~ ' X l x 3 Y 2 Y t 4 )  

Note that this formula is a symmetry transformation for something. Denote 
(A.24) as P3. Let z3 be a permutation transformation, reordering the 
columns in 3~s as r3(1, 2, 3 )=(2 ,  3, 1). Then (r3p3)6= 1. 

The last formula is a symmetry transformation for 4 ~4. A derivation 
of it is described before formula (A.24). Let the structure of a set q;, q,-, ;tv, 
A, A' be defined identically to that ofp~,/~;, ~0, A, A'. Then 

822/82/I.2-4 
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4~4 ((pl,ml)(p3, m3)(ql, ll)(q3, 13)[ ) 
\ (P2.  m2)(P4, rn4)(qz. 12)(q4. l,) 0 

: : ~ 1 2 r 1 6 2 1 6 2  (O(12-m2)(ml  + m 3 - m 2 - m 4 )  

\ ~ J r + m 3 - - m 2 - - m 4 )  

w ( ~ : _ l m l  - -  m2)  w(~321m3  - m 2 )  w ( x i 2 l l t  - 12) w(y32113 - 12) 

X "14'(~43 Ira4 -- m3) w(~41 Ira4 -- m i) w(x43114 -- %) w(x41114 -- It) 

( ( i l l , - - m 3 ) ( f i 3 , - - m ] ) ( ~ ,  l~ - -  m 2  - -  m 4 ) (  (13, 13 - -  m 2  - -  m 4 )  l O" ~ 
)< 4 ~r-/4 

\ ( f i 2 ,  - - m 4 ) ( f i 4 ,  - - m 2 ) ( q 2 ,  12 - -  m l - -  m 3 ) ( q 4 ,  14 - -  m l - -  m 3 )  I /  

where the constraints are 

and 

(A.27) 

y P  ,]P l~q ~q - P - P - q - q  . v . P Y P ~ q Y q  
I P  3 J ' 1 ~ 3  ~ 1'~ 3"~1~3 . . . . .  f_O-- 1 ~ l ~  3 ~  1"~3 

I~P I~P ~q l~q ~P -P ~q . rq  ",,-P ~cP ~,-q ~,-q 
�9 )" 2 .r  4 P'2 ) ' 4  ~ 2 ~ 4 ~ 2 ~ 4  ~ 2 ~ 4 ~ 2 ~ 4  

/1 y P  a~P'YP'P A' "I~P I~P'vP x,'P 
- - ~ - W  -1 /2  1 "v 3 ~  2 z ' 4  - - = ( / )  I/2 y I "v 3 "  2 "  4 (A.29) 
A 7q  - q  i ,q  ~ q  ' ./I I ~ 'q  ",-q ~ q  l~q - 1 z ;3 . r  2 .Y4 ~ I ~* 3 ..r 2 ) ' 4  

and the spins in (A.27) are not independent: 

ml + m3 + Ii + 13 = m2 + m4 + 12 + 14 (A.30) 
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